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Abstract

To support the concurrent design processes of mechatronic subsystems, unified mechatronics modeling and cooperative
body–brain coevolutionary synthesis are developed. In this paper, both body-passive physical systems and brain-active
control systems can be represented using the bond graph paradigm. Bond graphs are combined with genetic programming
to evolve low-level building blocks into systems with high-level functionalities including both topological configurations
and parameter settings. Design spaces of coadapted mechatronic subsystems are automatically explored in parallel for over-
all design optimality. A quarter-car suspension system case study is provided. Compared with conventional design
methods, semiactive suspension designs with more creativity and flexibility are achieved through this approach.
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1. INTRODUCTION

Mechatronics is a natural stage in the evolution of modern
products, many containing components from different en-
gineering domains, such as mechanical, electrical, and con-
trol systems. At early design stages, important decisions
need to be made to determine which portions of an engineer-
ing design problem are best solved in each of these domains
given the current state of technology. Decisions required in-
clude which parts should be designed as mechanical subsys-
tems, which should be electronic, where actuators and sensors
should be located, and how these subsystems should combine
to achieve overall design optimality. In concurrent engineer-
ing practice, mechatronics represents a synergistic system de-
sign philosophy to optimize the system as a whole simultane-
ously (Isermann, 2003). However, this ideal integrated design
philosophy is still not formally carried out in practice because
of the lack of system-level support for mechatronics concep-
tual design.

First, design in different engineering disciplines in general
speaks different languages. There is the lack of a unified
approach that integrates design and synthesis across multiple

engineering domains. Second, there is the lack of a concurrent
design process across mechatronic subsystems. Mechatronic
systems are controlled electromechanical systems. In many
cases, the time when a mechanical or electromechanical de-
sign is specified is also the time when many restrictions are
inherently placed on the control system design. This may
not lead to overall design optimality because subsystems in
different domains are not designed concurrently. Third, there
is the challenge of exploring various design alternatives auto-
matically and creatively. Although computers have a definite
advantage over humans in memory, accuracy, speed, and stor-
age capability, their inability to make informed and intuitive
decisions causes many to believe that they are not capable of
embodying the innovative process of design synthesis. This
perspective, however, has gradually changed with advances
in the establishment of formalized design representation
and design synthesis as computational search of the design
space (Campbell, 2000).

Recently, there have been substantial successes in research
on computational synthesis, especially using evolutionary al-
gorithms (Bentley, 1999; Lipson et al., 2003), to address
some of the problems and challenges mentioned above.
Among various approaches, genetic programming is of par-
ticular interest because of its great potential for open-ended
search of both design topologies and associated parameters.
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Much research has been carried on about design automation
of analog electrical circuits using schematic diagrams (Koza,
1999), controller design using block diagrams (Koza et al.,
2000), and mechatronic design using bond graphs (Goodman
et al., 2002). Engineering systems in different domains can
be described using different model representations, but for
mechatronic product design involving multiple domains, a
unified formal model representation is more desirable. The
bond graph, a domain-neutral formal schematic paradigm,
has gained wide recognition for representation and analysis
of energetically coupled physical systems (Paynter, 1961;
Rosenberg & Karnopp, 1983; Karnopp et al., 2000). Bond
graph modeling maintains power conservation and explicitly
shows interactions among a succinct set of elements, which
allows for graphical analysis and readily leads to computer-
based manipulation.

Exploring multiple design choices for passive mechatronic
systems combining bond graphs and genetic programming
has been initiated and explored for design of analog filters,
printers, microelectromechanical systems (MEMS), and so
forth (Goodman et al., 2002; Fan, 2004). Because in many
cases mechatronic systems also incorporate active control ele-
ments, bond graph modeling has been broadened to represent
controller schemes as well, thus unifying active control sys-
tems and passive physical systems for whole system design
(Wang & Terpenny, 2003; Wang et al., 2005). Built upon
the previous work and inspired by symbiosis phenomena
from nature, a useful extension to the more traditional evolu-
tionary algorithms, coevolution, is applied to this work. This
approach cooperatively evolves coadapted mechatronic sub-
systems in parallel, and generates alternative design concepts
that are comparable or even superior to those generated using
conventional methods, with more flexibility and better
performance.

The remaining sections are arranged as follows. Section 2
gives the background of this work: mechatronics design is
treated as a network synthesis problem with bond graph map-
ping. Section 3 provides the foundation for unified physical
systems modeling and control using bond graphs. Section 4
explains how computational synthesis of mechatronic sys-
tems is achieved by combining bond graphs and genetic pro-
gramming. Section 5 illustrates the coevolutionary synthesis
framework for integrated mechatronics design. A quarter-
car suspension design case study is given in Section 6. Con-
clusions are provided in Section 7, highlighting the value and
future plans for the proposed approach.

2. MECHATRONICS NETWORK SYNTHESIS
WITH BOND GRAPHS

The proposed approach employs bond graphs as the basis for
mechatronics system design. Bond graphs are represented as
interconnected components with power flow across their in-
terfaces (ports). The ports are specified in terms of effort
and flow variables in various domains, governed by energy
conservation laws (Karnopp et al., 2000). Design synthesis

in this approach is to generate bond graph structures from im-
pedance specifications, and then to associate the bond graphs
with physical artifacts. For linear, time-invariant continuous
systems, the impedance Z can be defined as the ratio of the
Laplace transform of the effort variable to the Laplace trans-
form of the flow variable. Conversely, admittance is defined
as the ratio of the Laplace transform of the flow variable to the
Laplace transform of the effort variable.

Z ¼ effort
flow

¼ e(s)
f (s)

,

Y ¼ flow
effort

¼ f (s)
e(s)

.

Extending the wealth of literature and experience in net-
work synthesis for electrical circuits, and drawing on analogy
between electrical networks and mechanical networks (Har-
man & Lytle, 1962), mechatronic systems with power interac-
tion can be modeled as general multiport networks, repre-
sented as a black box, with n pairs of effort and flow
variables (ei, fi ), i ¼ 1, . . . , n, as shown in Figure 1.

Each port represents an interface with other subsystems.
When two ports of two subsystems are connected, power
can flow through the connected ports from one subsystem
to another subsystem, which are represented by a single
bond between the two subsystems. The power bonds are re-
presented with half-arrows following the notation of bond
graphs, to indicate the direction of power flow when the ele-
ments associated with the power bonds have positive values.
The basic bond graph elements are dissipative (R), capacitive
(C), and inertia (I). Figure 2 summarizes the basic one-port
element and three-port junction bond graph structures repre-
sented as impedances. The vertical bar associated with each
power bond indicates causality, that is, the signal direction
of the effort variable.

For a two-port network, its impedance, admittance, and im-
mittance matrix are defined as the following:
impedance matrix:

e1

e2

� �
¼ Z11 Z12

Z21 Z22

� �
f1
f2

� �

admittance matrix:

f1
f2

� �
¼ Y11 Y12

Y21 Y22

� �
e1

e2

� �

Fig. 1. A mechatronics n-port network.
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immittance matrix:

f1
e2

� �
¼ G11 G12

G21 G22

� �
e1

f2

� �

3. UNIFIED PHYSICAL SYSTEMS MODELING
AND CONTROL

Although bond graphs were developed mainly to study en-
ergy interaction of passive physical systems, they are seldom
applied to the synthesis of control systems because of the
richness and completeness of well-established control system
design methodologies in pure mathematical settings. How-
ever, it is argued that the mathematical control methods distill
out system-specific features and physical insight that could
have aided in the design procedure using engineering intui-
tion (Yeh, 2002). The postulate of “physical equivalence”
states that for every controlled system there exists a pure phys-
ical system with no controller whose dynamical interaction
behavior is identical; thus, it is possible to describe a con-
trolled system as an equivalent pure physical system. In other
words, all a controller can do is to alter the behavior of one
physical system such that it emulates the behavior of
another physical system, provided that ideal actuators and
sensors can be placed at any point in the original physical
system (Hogan, 1985). Accordingly, controller design based
on physical models is proposed, where engineering insight
from the physical domain is brought to bear directly
onto the control design problem (Sharon et al., 1991; Gaw-
throp, 1995).

According to the definition of network passivity (New-
comb, 1966), a passive system only dissipates or stores en-
ergy, whereas an active system relies on the use of an external
power source, together with sensors, controllers, and actua-
tors within a physical structure, to provide energy to the sys-
tem. Based on whether the actuator and the sensor are located
at the same place, control methods can be classified as collo-
cated control and noncollocated control.

Collocation means to physically locate the sensors and the
actuator in the same position such that the effort and flow
variables are energetically conjugated. Noncollocated control
means to locate the sensor and the actuator in different posi-
tions, so that there is a structural resonance between the sen-
sor and the actuator. Collocated control is of particular interest
when using bond graphs, because it can be represented as an
effort-flow one-port element, including all sensor, controller,
and actuator effects, in the bond graph paradigm. The active
effort source is generated by the corresponding flow signal
measurement through controller modulation, and vice versa.
One simple example of collocated control can be illustrated
in Figure 3. One the left-hand side, the bond graph represents
a closed-loop feedback control system with plant, sensor,
controller, and actuator, and its block diagram representation
is shown on the right-hand side. It is recognized that bond
graphs are condensed block diagrams, because there is a close
correspondence between bond graphs and their equivalent
block diagrams (Karnopp et al., 2000).

In the physical domain, all one-port elements, such as dam-
pers and springs, are positive real, thus passive. Collocated
controls with positive-real elements are intrinsically passive.
They provide negative feedback, and hence, lead to better sta-
bility than use of noncollocated control, with respect to uncer-
tainty (Preumont, 2002). A collocated control structure with
positive-real elements may be implemented either passively
or actively. This allows for an active implementation of a pas-
sive control law. Collocated controls with negative-real ele-
ments are positive feedback control methods. They can
only be implemented actively because there is no physical
correspondent of negative one-port elements.

Noncollocated control can also be represented as a one-
port element in bond graphs, whereas the effort and flow vari-
ables associated with one power bond are actually separated
to appear at two different physical locations for measurement
and actuation.

To design either a collocated or noncollocated control in
the physical domain, the controller can be represented by var-
ious combinations of bond graph C, I, and R elements, to

Fig. 2. Impedances of bond graph structures.
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represent various control schemes, such as P, PI, PD, and PID
controllers or lead and lag compensators. This approach facil-
itates separation of controller representation issues from im-
plementation issues, thus providing guidance at the high-level
design stage in selecting the proper overall system architec-
ture for a given design task. Figure 4 shows part of the con-
troller schemes in bond graphs generating controlled effort
from flow input, together with their corresponding block dia-
grams and transfer functions. The various controller schemes
are typical modular structures consisting of basic bond graph
elements.

Figure 5 demonstrates the use of bond graphs as a unified
mechatronics modeling tool. The apparently different sys-
tems in different domains, when represented in bond graphs,
are the same (Broenink, 1999). The bond graph diagram
shows a one-junction joining I, R, and C elements. It is a sec-
ond-order system functioning as a resonator. This resonator
can be mapped to a mechanical realization using a spring, a
damper, and a mass; or to an electrical realization using a ca-
pacitor, a resistor, and an inductor. It can also be mapped into
a MEMS realization using microstructures fabricated with C,
I, and R properties.

Of the most importance to this work, bond graphs have
also been broadened to represent controllers. For collocated
control with sensors and actuators located at the same
place, if velocity signal is measured, negative velocity feed-
back is equivalent to a damping R action; negative position
feedback is equivalent to a spring C action. The PI controller,
which consists of one R and one C element, is realized
by measuring the velocity signal and generating a force
proportional to both the position and the velocity of the
mass I. The force input is realized through an actuator that
provides modulated power to the system. Because the
power flow direction of the actuating bond is reversed, the
modulated force becomes negative, thus forming a negative
feedback loop.

Our work takes a further step in advancing the physical do-
main design methodology by designing the passive physical
structures and the active controller strategies of a mechatronic
system concurrently and computationally. By using bond
graphs as unified representation across domains, it is expected
to achieve codesign of physical systems and controllers with-
out a priori partitioning of the system into different domains.
This gives designers flexibility to investigate different

Fig. 4. Controller schemes in bond graphs and black diagrams.

Fig. 3. Controller as impedance in bond graphs and block diagrams.
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possibilities for designing subsystems in different domains to
verify the entire system optimality.

4. BOND GRAPHS AND GENETIC
PROGRAMMING

In this work, computational synthesis of mechatronic systems
using bond graphs benefits from their simple and unified
representation across multiple energy domains. The graphical
and topological characteristics of bond graphs allow their
generation by flexible combination of bonds and elements,
to form high-level functionality and complexity from lower
level building blocks.

Genetic programming, an extension of genetic algorithms
(Holland, 1975), is well recognized as a powerful tool for to-
pologically open-ended search. A frequent objective of using
genetic programming is to achieve human-competitive ma-
chine intelligence with little human effort involved (Koza,
1992). By initializing a random population of tree-structured
computer programs, then using the genetic operations of
reproduction, crossover, and mutation, genetic programming
can be used to grow trees that can specify increasingly com-
plex models. More information about genetic programming
can be found at the genetic programming official Website
(2008).

Bond graphs can be encoded in a genetic programming tree
representation to explore various mechatronic design config-
urations and parameterizations. Detailed explanation of the
general bond graph/genetic programming (BG/GP) encoding
and decoding principle can be found in Goodman et al.
(2002), Wang and Terpenny (2003), and Fan (2004).

The basic bond graph elements are fC, I, R, TF, GY, 0, 1,
Se, Sfg. It is often convenient and necessary to initiate a pro-

gram by specifying an embryo and test fixtures that are appro-
priate for the problem. The embryo is an invariant part of a
model that contains the interface or boundary information as-
sociated with the problem to be solved, such as the drive and
the load, or the fixed physical plant. Elements that must be in-
cluded in the embryo include those defining the system inter-
face at which the desired objectives are measured; perfor-
mance of a design could not be measured in their absence.
In this work, the use of input sources Se and Sf is limited
to only the initial embryo structure. In addition, at the concep-
tual design stage, because transformers and gyrators can be
simplified and eliminated from the bond graphs, TF and
GY elements are also not included among the genetic pro-
gramming primitives.

The program trees evolved by genetic programming may be
employed in many different ways (Koza et al., 2000). In the
first approach, genetic programming is used to automatically
create a computer program to solve a problem. The program
tree is simply executed, for example, to generate an algebraic
function to approximate a certain input–output pattern using
standard arithmetic operators and operands. A second ap-
proach is a developmental approach, in which the program
tree is interpreted as a set of instructions for constructing a
complex structure from a very simple embryonic structure.
This approach has been used to generate electrical circuits, in-
cluding several previously patented circuits and human–com-
petitive results (Koza, 1999). This approach has also been
used to evolve analog circuits, a printer, and MEMS structures
using bond graphs (Goodman et al., 2002; Fan, 2004). A third
approach is to let program trees represent modular building
blocks, linked by direct lines representing the flow of informa-
tion. This approach has been used to evolve robust controllers
for a given plant (Koza et al., 2000).

Fig. 5. Resonator in bond graph and various domain realizations. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]
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In the context of this work, we chose to apply the first ap-
proach. Bond graphs are treated as binary tree-based struc-
tures with elements interconnected through junctions. The re-
sult of executing the program tree is the impedance function
of an effort–flow pair in a bond graph joined by zero and/or
one junctions that can be used directly for impedance calcu-
lation. One-junction, zero-junction, R, C, and I elements are
mapped to operators relating to bond graph elements. Arith-
metic addition and subtraction are mapped to arithmetic op-
erators to manipulate ephemeral random constants (ERCs;
Koza, 1992). ERCs are mapped to operands with their numer-
ical values interpreted in a logarithmic scale to represent
numbers ranging over 10 orders of magnitude (Koza,
1999). Because of the introduction of negative one-port ele-
ments, the ERC can be set to both positive and negative val-
ues. The impedance calculation process is similar to arith-
metic operations. Table 1 defines the function and terminal
primitive set of genetic programming to construct bond
graphs in this work.

Once the evolutionary computation converges or termi-
nates, the resulting genetic programming tree structures will
be simplified to reduce redundant branches and nodes for fur-
ther analysis and verification.

5. COOPERATIVE COEVOLUTIONARY
SYNTHESIS

To successfully apply the BG/GP approach to solve increas-
ingly complex mechatronic design problems, an explicit notion
of modularity is introduced to provide reasonable opportunities
for solutions to evolve in the form of coadapted subsystems.
Cooperative coevolution is a natural symbiosis phenomenon
that has aroused a growing interest in its application to solve
various problems with interacting modules. It is argued that
in nature the body and brain of a creature are tightly coupled
and survive together (Pollack et al., 2001). Initial research on
evolving artificial life forms with both body and brain for a par-
ticular task has proved to be successful. Robot morphology and
a controller have been encoded directly (Lipson & Pollack,
2000), using a generative graph structure (Hornby & Pollack,
2001), or with a hybrid structure consisting of genetic

programming for evolving the controller and genetic
algorithms for evolving the body parameters (Lund, 2003).

Although many of the above-mentioned coevolutionary ro-
botics approaches use neural network controllers, in this
work, the body and brain coevolutionary synthesis of mecha-
tronic systems uses unified bond graph trunk modules en-
coded in genetic programming across all subsystems. The
whole system needing to be designed is first decomposed
based on engineering judgment into coadapted subsystems
in the analysis phase, and then all subsystems are coevolved
cooperatively in the synthesis phase. The decomposition is
not for dividing the system into separate engineering do-
mains, only into subsystems. Using bond graphs to represent
each subsystem, it benefits from exploring concurrent design
of mechatronic subsystems without first dividing them into
specific domains. For example, if an evolved subsystem can
be implemented either passively or actively, a decision may
be made at a later point of time such that it is part of the
“body” design rather than part of the “brain” design.

We use a generalized cooperative coevolution architecture
for evolving ecosystems consisting of two or more interacting
coadapted species (Potter & De Jong, 2000). The species are
genetically isolated as in nature, that is, individuals from one
species only mate with individuals from the same species.
The species interact with one another within a shared domain
model and have a cooperative relationship. Figure 6 shows the
general architecture of the cooperative coevolutionary synthe-
sis framework.

Table 1. Genetic programming function and terminal primitive set

Set
Name and
Description Symbol

Basic function 0-junction f 0
1-junction f1
R Element R
C Element C
I Element I
Arithmeticþ: add two ERCs ADD
Arithmetic –: subtract two ERCs SUB

Terminal primitive ERC E

ERC, ephemeral random constant.
Fig. 6. Cooperative coevolutionary synthesis framework. [A color version of
this figure can be viewed online at journals.cambridge.org/aie]
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Because any given individual from one species represents
only a subcomponent of the problem, collaborators need to be
selected from other species to assess fitness. Each generation,
all individuals belonging to a particular species have their fit-
ness evaluated by selecting some set of collaborators from
other species to form a complete solution. There are several
issues needing to be addressed for applying coevolutionary
algorithms to evolve interdependent subcomponents (Wie-
gand et al., 2001):

1. The degree of greediness of choosing a collaborator
(collaborator selection pressure): the last evaluated fit-
ness scores of the individuals in the alternative sub-
populations are used to bias how to choose collaborators.
There are greedy, random, and worst methods to select
the best, random, and the worst representative collab-
orators from the previous generation, respectively.

2. The number of collaborators per subpopulation to use for
a given fitness evaluation (collaboration pool size): the
number of collaborators can clearly affect the success
of the coevolutionary algorithm. Increasing the number
of collaborators can significantly increase overall compu-
tation time, a problem that is combinatorial with the num-
ber of subpopulations. Commonly in practice, one to five
collaborators are selected for experimentation.

3. The method of assigning fitness values given multiple
collaborations (collaboration credit assignment): the
optimistic method assigns an individual fitness score
based on the value of its best collaboration; the hedge
method assigns an individual fitness score based on
the average value of its collaboration; the pessimistic
method assigns an individual fitness score based on
its worst collaboration. All experiments in this work
used the optimistic method for credit assignment.

In this work, the coevolutionary design synthesis started
from the desired system specification. The fitness of a com-
plete solution combining individuals from all the species is
evaluated according to how accurately it approximates the de-
sired overall system specification. We use Open Beagle as our
evolutionary computation platform. It is a well-structured
object-oriented framework including support for genetic
algorithms, genetic programming, evolution strategies, and
coevolution (Gagné & Parizeau, 2002).

6. CASE STUDY: QUARTER-CAR SUSPENSION

6.1. Problem description

Suspension systems are important subsystems of most
wheeled vehicles. From a system design point of view, there
are two main types of disturbances acting on a vehicle,
namely, road and load disturbances. Road disturbances
have the characteristics of large magnitudes at low frequency
(such as hills) and small magnitudes at high frequency (such
as road roughness). Load disturbances include the variations

of loads induced by accelerating, braking, and cornering. A
good suspension design is concerned with disturbance rejec-
tion from both these disturbances to the outputs (e.g., vertical
position of vehicle mass). In general, a suspension system
needs to be “soft” to follow the road smoothly for a comfort-
able ride as well as to insulate against high-frequency road
disturbances, and to be “hard” to insulate against any load
disturbances (Wang, 2001).

Suspension systems have been widely applied to vehicles
to isolate body vibration from road and load disturbances.
They may include passive physical designs as well as active
control designs. In the literature, the three common classifica-
tions of suspension systems are passive, active, and semiac-
tive, depending on the amount of external power required
for the suspension to perform its function (Chalasani, 1986).

A quarter-car schematic model is illustrated in Figure 7.
The sprung mass ms (kg), consists of the main vehicle body
supported by the suspension. The unsprung mass mu (kg),
consists of hub, wheel, and tire. The tire is modeled as a
spring with stiffness kt (N/m). Vertical positions zs, zu, and
zr are for the sprung mass, unsprung mass, and road distur-
bance input, respectively. Force Fs is the load force distur-
bance input, u represents any possible suspension force,
and Fr represents the force between the road and the tire.
This case study is adapted from Smith (1995).

The following equations describe the system motion:

ms€zs ¼ �uþ Fs, (1)

mu€zu ¼ uþ Fr, (2)

where Fr ¼ kt(zr 2 zu).
From the point of view of a multiport mechatronics

network, the quarter-car suspension system can be viewed
externally as a two-port network. Its corresponding mixed
immittance matrix specification G is defined as

_zs

Fr

� �
¼ G11 G12

G21 G22

� �
Fs

_zr

� �
(3)

When both road and load disturbance rejection are consid-
ered, it requires that in Eq. (3), G12(s) and G22(s) be set “soft”
for road disturbance rejection, whereas G11(s) and G21(s) be

Fig. 7. Quarter-car schematic model.
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set “hard” for load disturbance rejection. To achieve such be-
havior, the desired system performance is specified in the im-
mittance matrix for a combination of soft and hard suspen-
sions as follows:

_zs

Fr

� �
¼ Gh

11 Gs
12

Gh
21 Gs

22

� �
Fs

_zr

� �
. (4)

In this work, the desired system is specified as an ideal “dou-
ble skyhook” configuration as shown in Figure 8, which has
been frequently used for target suspension force (Karnopp,
1995). It is depicted as the additional dashed system, consisting
of a spring ks between the sprung mass and the unsprung mass,

a virtual sky-hook damper cs for the sprung mass, and a virtual
sky-hook damper cu for the unsprung mass. The ideal suspen-
sion force u ¼ ks(zs 2 zu) þ csżs 2 cużu.

The experimentation below uses the following parameters
for the quarter-car model (Smith, 1995): ms ¼ 250 kg, mu ¼

35 kg, kt ¼ 150�103 N/m. The desired frequency response
for road disturbance is specified in Gs

12(s) using a double sky-
hook configuration with a soft damper and spring parameter-
ization: ks

s ¼ 10,000 N/m, cs
s ¼ 4000 Ns/m, cs

u ¼ 2000 Ns/m.
The desired load disturbance frequency response is specified
in Gh

11(s) using another double skyhook configuration with a
hard damper and spring parameterization: kh

s ¼ 150,000 N/m,
ch

s ¼ 12,000 Ns/m, ch
u ¼ 6000 Ns/m.

The desired Gh
11(s) and Gs

12(s) can be calculated as follows:

Gh
11(s) ¼ _zs

Fs
¼ (mus2 þ Ch

us þ kt þ kh
s )s

msmus4 þ (ch
s mu þ Ch

ums)þ (kh
s mu þ kh

s ms þ kt þ ks)s2

þ ch
s kts þ kh

s kt,

Gs
12(s) ¼ _zs

_zr
¼ cukts þ ks

s þ kt

msmus4 þ (ch
s mu þ Ch

ums)s3 þ (kh
s mu þ kh

s ms þ ktms)s2

þ ch
s kts þ kh

s kt.

Their Bode plots are shown in Figure 9.
There is 1 degree of freedom available for the response to

each of the road and load disturbances. They can be deter-
mined independently if two suitable measurements are avail-
able for feedback, for example, suspension deflection and
sprung mass velocity (Smith, 1995). The suspension design
with two such measurements, as depicted in a bond graph,
is shown in Figure 10.

Fig. 8. Quarter car with double skyhook suspension configuration.

Fig. 9. Desired road and load disturbance response. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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The control law is taken to be

u ¼ [u1 u2] ¼ [k1(s) k2(s)]
szs � szu

szs

� �

where k1(s) is a collocated controller with relative velocity
feedback, k2(s) is a noncollocated controller with absolute ve-
locity feedback. With k1(s) and k2(s), the actual road and load
disturbance response can be calculated as

G11 ¼
_zs

Fs

¼ (mus2 þ k1sþ kt)
msmus3 þ (k1ms þ k1mu þ k2mu)s2 þ ktmssþ k1kt þ k2kt

,

Gh
12(s) ¼ _zs

_zr

¼ k1kt

msmus3 þ (k1ms þ k1mu þ k2mu)s2 þ ktmssþ k1kt þ k2kt
:

Because of conflicting specifications for road and load dis-
turbance performance requirements, the performance cannot
be achieved by a passive suspension alone. Extra energy must
be introduced using active suspension (Smith & Walker,
2000). From the system point of view, it is desirable to ex-
plore both controller strategies concurrently for possible pas-
sive and active realization of the suspension system to achieve
overall optimal system performance and energy efficiency.

6.2. Controller coevolution

Controller k1(s) and k2(s) are both represented in bond graphs
encoded in genetic programming. They belong to two coe-
volved individual GP species cooperating with each other
to form a complete solution for the quarter-car suspension de-
sign. Table 2 summarizes the key features of the problem of

coevolving two suspension controllers. Detailed explanation
of the BG/GP encoding and decoding procedures can be
found in Goodman et al. (2002), Wang and Terpenny
(2003), and Fan (2004).

One of the best solutions discovered by coevolutionary ge-
netic programming using the basic functions from Table 1
produced the following results as shown in Figure 11 for
k1(s), and Figure 12 for k2(s). These bond graph structures
are manually simplified based on the genotypes shown be-
low.

As shown in Figure 10, k1(s) measures velocity difference
between the sprung mass and the unsprung mass, and pro-
vides u1, part of force u between the two masses. Note that
R8, C12, R13, C9, R10, and C11 have negative values and
thus need to be implemented actively.

Table 2. Suspension controllers

Objective: Design a suspension system composed of two
controllers

Test fixture and
embryo:

Two-input, two-output initial suspension system
with a sprung mass, an unsprung mass, and a
spring

Program architecture: Two result-producing GP species, k1 and k2, with
common attributes (below)

Function set for the
result-producing
branches:

For construction-continuing subtrees:
Fccs�rpb�initial ¼ {f0, f1, R, C, I} For arithmetic-
performing subtrees: Faps ¼ {ADD, SUB}

Terminal set for the
result-producing
branches:

For arithmetic-performing subtrees: Taps ¼ {E}

Fitness cases: 41 frequency values in an interval of four decades
of frequency values between 0.1 and 1000 Hz

Raw fitness: Taking the desired road and load disturbance
rejection responses Gs

12(s) and Gh
11(s) as

evaluation criteria, the raw fitness of a
combined solution including individuals from
both species is calculated as

fitnessraw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (err1 þ err2)2

n

s

where n is the number of logarithmically sampled
frequency points err1 and err2 are the absolute
difference of magnitude between the evolved
and the desired road and load disturbance
rejection frequency response, respectively.

err1 ¼ G12( jv)� Gs
12( jv)

�� ��
2;

err2 ¼ G11( jv)� Gh
11( jv)

�� ��
2:

Normalized fitness: fitnessnorm ¼
1:0

fitnessraw þ 1:0

Parameters: Each species: 10 subpopulations of 100
individuals; migration interval: 10 generations;
migration size: 2 individuals; crossover rate:
0.85; mutation rate: 0.15; initializing tree
depth: 2–4; maximum tree depth: 10–17

Result designation: Best-so-far individual from max fitness species
and matching individual from another species

Termination: When either species reaches max fitness value
0.99

Fig. 10. Quarter-car suspension control with both road and load distur-
bances. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]
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The genotype for controller k1(s) is

f1( f1( f1( f0(R(�2536:01), C(�2.91685e-05)), C(7.29305e-06)),

f1( f0(R(�28144:44), C(�1.23919e-05)), f0(R(�465:871),

C(�9.565442e-05)))), R(2104:298))

A one-port bond graph structure can be represented in im-
pedance form and transformed to a transfer function (Redfield
& Krishnan, 1993).

k1(s)

¼ 2104s4 þ 93380s3 þ 2238000s2 þ 30470000sþ 119300000
s4 þ 38:83s3 þ 406:5s2 þ 869:8s

.

The input to controller k2(s) is the sprung mass velocity;
the output of controller k2(s) is u2, which provides another
part of force u acting between the sprung mass and the un-
sprung mass.

The genotype for controller k2(s) is

f1(f0(f1(f0(R(317:927), C(5.33948e-07)), R(28639:9)),
f0(f1(C(8.3877e-06), R(10490:4)), f1(I(48:0437),
C(5.9036e-06)))), R(1890:49))

k2(s)

¼ 9569s4þ5:735e007s3þ2:39e0009s2þ2:216e001sþ1:952e012
s4þ6102s3þ9:752e005s2þ3:177e007sþ6:328e007

.

Here, k1(s) and k2(s) can also be calculated algebraically
using conventional control methods, to match the desired
load and road disturbance responses, with the following re-
sults (Smith, 1995):

k1(s)

¼

2000(s5 þ 224:4s4 þ 10270s3 þ 251600s2 þ 3600000s
þ12860000)

s5 þ 187:4s4 þ 8611:4s3 þ 96000s2 þ 171428:6s
,

k2(s)

¼ 10000(s4 þ 57:886s3 þ 4577:14s2 þ 101142:9sþ 514285:7)
s4 þ 187:4s3 þ 8611:4s2 þ 96000sþ 171428:6

.

Comparison of the two results shows that controller k1(s)
is of lower order and less complexity than the controllers ob-
tained from algebraic calculation. This demonstrates that by
applying genetic programming to coevolve controller struc-
tures encoded in bond graphs, it is possible to discover equal
or better control strategies in comparison to those obtained
through conventional methods. The Bode plots of the coe-
volved controllers are compared with those of the calculated
controllers, as shown in Figure 13. They have almost the
same frequency responses. However, controllers repre-
sented only in transfer functions give no physical insight
as whether certain parts of the controller may be imple-
mented passively.

In this approach, the controllers are evolved in the physical
domain with bond graph representation. The resulting bond
graph structures give designers insight in choosing among
different physical realizations using active or passive subsys-
tems. Analyzing the collocated controller k1(s), R2 and C4,
joined by a one-junction, are positive real, and thus can be
implemented passively as a spring-damper parallel pair,

Fig. 12. Coevolved controller structure in bond graph form for k2(s). [A color version of this figure can be viewed online at
journals.cambridge.org/aie]

Fig. 11. Coevolved controller structure in bond graph for k1(s). [A color
version of this figure can be viewed online at journals.cambridge.org/aie]
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while R8, C12, R13, C9, R10, and C11 are negative real and
need to be implemented actively. This is shown in Figure 14,
with the following parameters: R2 ¼ 2104.298 Ns/m, C4 ¼
137116.9 N/m,

k11(s) ¼ 125400s2 þ 3941000sþ 27090000
s3 þ 38:83s2 þ 406:5sþ 869:8

.

6.3. Incorporating physical system consideration

The advantage of using bond graphs for mechatronic system
design is that they can explore the whole system configuration
with both passive and active systems simultaneously for con-
current synthesis. In the experiments of the last section, there
are no initial constraints as to whether the coevolved control-
lers are to be implemented actively or passively. Coevolu-
tionary computation is used to discover useful controller
structures, including possibly emergent passive physical
structures between the sprung mass and the unsprung mass.
Emergent passive physical structures are beneficial in terms
of energy efficiency in comparison to a fully active suspen-

sion system. Instead of relying on generating passive physical
structures emergently, constraints can be explicitly incorpo-
rated into the coevolution requiring that certain parts of the
suspension system be passive, and that the physical structures
have no inertia component. This approach adds pressure to
discover physically meaningful structures for a semiactive
suspension design.

When taking explicit physical systems into consideration,
our coevolution of controllers involves three species. The col-
located controller k1 in the last section is split into two parts
joined by a one-junction: passive k1p and active k1a. Species
k1p is part of the suspension that is physically realizable, k1a

corresponds to active controller k11 in Section 5.2, and k2 is
the same as in Section 5.2. They are all represented as bond
graphs.

Using the same parameter settings as before, coevolution-
ary computation on this problem generated the following
three best structures after simplification, having the same ac-
tive control configuration as shown in Figure 14.

1. Design alternative 1: The bond graph of the physical
system and its mechanical implementation are illus-
trated in Figure 15.

2. Design alternative 2: The bond graph of the physical
system and its mechanical implementation are shown
in Figure 16.

3. Design alternative 3: The bond graph of the physical
system and its mechanical implementation are shown
in Figure 17.

The three alternative coevolutionary results shown above
yield different configurations of the passive part of the sus-
pension system. The one shown in Figure 15 has the simplest
physical structure and is also close to the passive physical sys-
tems obtained in Section 5.2. Taking k1 ¼ k1p þ k1a, the Bode
plots of the coevolved controller k1 compared to the calcu-
lated controller k1 are shown in Figure 18. They also have
similar frequency responses.

In summary, a passive suspension system has the ability to
store energy via a spring and to dissipate it via a damper. Its
parameters are generally fixed, being chosen to achieve a

Fig. 13. Evolved k1 and k2 compared to calculated k1 and k2. [A color version of this figure can be viewed online at journals.cambridge.
org/aie]

Fig. 14. Physical realization of suspension control with road and load
disturbances. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]

Cooperative body–brain coevolutionary synthesis of mechatronic systems 229



certain level of compromise between road following and load
carrying. An active suspension system has the ability to store,
dissipate, and introduce energy to the system, with extra flex-
ibility to achieve improved design performance. In this work,
by designing controllers in the physical domain, it enables
coevolving both passive physical structures and active con-
trollers simultaneously. It should be noted that in this work,
we have assumed that the sensor and the actuator have perfect

dynamics. The suspension design will be considerably mod-
ified if such assumptions do not hold well.

6.4. Coevolutionary experimental analysis

In the experimentation from Section 5.2, there are two spe-
cies: controller k1 and k2. For each species, two representative
collaborators are chosen to pair with individuals in the other

Fig. 16. Suspension passive physical structure design alternative 2. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

Fig. 15. Suspension passive physical structure design alternative 1. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

Fig. 17. Suspension passive physical structure design alternative 3. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

J. Wang et al.230



species for their fitness evaluation. The two representative
collaborators are the best individual and one random individ-
ual from the previous generation. The termination criterion
for this coevolutionary process is when either of the species
reaches its maximum fitness value (0.99). Because the two
species are quite interrelated, the fitness improvement for
each species shows many dynamics with sharp-edged curves.

This is typically different from single-species evolution,
which normally has smoother fitness improvement curves.
The coevolution average and max fitness improvement
curves are shown in Figures 19 and 20, respectively, for a
typical run.

In the experimentation from Section 5.3, there are three
species: passive physical system k1p, collocated active con-

Fig. 18. Coevolved controller k1 compared to calculated k1. [A color version of this figure can be viewed online at journals.cambridge.
org/aie]

Fig. 19. Suspension controller k1 and k2 coevolution average fitness improvement. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]
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troller k1a, and noncollocated controller k2. The experi-
mental configurationsetting is similar to the coevolution with
two species. The average and max fitness improvement curves
for one typical coevolutionary run with three species are shown
in Figures 21 and 22, respectively, for a typical run.

7. CONCLUSIONS

This paper describes an integrated system-oriented coevolu-
tionary synthesis approach for open-ended mechatronics de-
sign using bond graphs. The combination of bond graphs
and genetic programming provides a mechanism for bridging
the field of mechatronics design with computational intelli-
gence. This work takes a further step upon previous work

by designing truly mechatronic systems including active con-
trol systems. It integrates control system design with multido-
main physical system design, and achieves synergy for whole
system design through concurrent computational synthesis
of mechatronic subsystems. The design philosophy and
formal design methodology have been demonstrated in the
quarter-car suspension case study. The emergent passive
physical structures are more energy efficient than a fully ac-
tive suspension system.

Although this is not the first approach to body–brain coe-
volution, it is the first to use the same bond graph representa-
tion to coevolve mechatronic subsystems that can consist of
both passive and active components. Using the same design
representation, we have the flexibility of choosing different

Fig. 20. Suspension controller k1 and k2 coevolution maximum fitness improvement. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]

Fig. 21. Suspension k1p, k1a, and k2 coevolution average fitness improvement. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]
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ways of physically implementing the system. The integrated
coevolutionary synthesis procedure can assist the designers
in reviewing a wider range of potential innovative and overall
optimal design options, and having more flexibility and in-
sight to determine a final solution.

There is a great deal of work that needs to be done to further
advance this approach. Mechatronics design integrates var-
ious disciplines and tools. At the conceptual design stage
with bond graph modeling, it only considers energy flows
and signal flows. However, at the detailed design level, the
design process should be accomplished in the context of
global optimization with multidisciplinary constraints and
multiple objectives, for more realistic implementation and
economic trade-off analysis.

For simplicity, this paper focuses only on linear systems.
However, the overall integrated design philosophy using
bond graphs can readily accommodate nonlinear systems.
The bond graph methodology easily allows one to model
components that have nonlinear constitutive laws. Mechatro-
nic system design with nonlinear characteristics will be
investigated in future work.

Evolutionary algorithms are powerful general-purpose
search methods. However, the practicality of evolutionary
computation strongly depends on available computational re-
sources. The case study in this work is of manageable com-
plexity. For more complex problems with larger search
spaces, massively parallel or distributed computing resources
are needed to address the complexity, for example, the use of
a Beowulf cluster. The EC framework adopted in this work
now has a distributed Beagle version, which uses the mas-
ter–slave model to distribute data over the network (Gagné
et al., 2003). Parallel and distributed evolutionary computa-
tion is of great interest for future work to design engineering
systems with increasing complexity.

Furthermore, to be successful, open-ended design pro-
cesses depend on their ability to scale to high complexities.

Related issues include hierarchy, functional modularity, and
structural regularity (Lipson et al., 2003). Although knowl-
edge incorporation and extraction related to this work
have been investigated to some extent (Wang et al.,
2005), these issues need to be given more examination in
future work.
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